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Abstract
A theoretical study of magnetic field (h) effects on single-particle spectra and the transport
quantities of heavy fermion metals in the paramagnetic phase is carried out. We have employed
a non-perturbative local moment approach (LMA) to the asymmetric periodic Anderson model
within the dynamical mean field framework. The lattice coherence scale ωL , which is
proportional within the LMA to the spin-flip energy scale, and has been shown in earlier studies
to be the energy scale at which crossover to single-impurity physics occurs, increases
monotonically with increasing magnetic field. The many body Kondo resonance in the density
of states at the Fermi level splits into two, with the splitting being proportional to the field itself.
For h � 0, we demonstrate adiabatic continuity from the strongly interacting case to a
corresponding non-interacting limit, thus establishing Fermi liquid behaviour for heavy fermion
metals in the presence of a magnetic field. In the Kondo lattice regime, the theoretically
computed magnetoresistance is found to be negative in the entire temperature range. We argue
that such a result could be understood at T � ωL by field-induced suppression of spin-flip
scattering and at T � ωL through lattice coherence. The coherence peak in the heavy fermion
resistivity diminishes and moves to higher temperatures with increasing field. Direct
comparison of the theoretical results to the field dependent resistivity measurements in CeB6

yields good agreement.

1. Introduction

The investigation of lanthanide/actinide based heavy fermion
(HF) systems has been a central theme in condensed matter
physics both theoretically and experimentally [1]. Their
behaviour is quite distinct from conventional clean metals, the
basic physics being driven by strong spin-flip scattering from
essentially localized f-levels, generating the large effective
mass. The periodic Anderson model (PAM) forms the general
paradigm within which these materials are studied. The
minimal model consists of a regular array of sites, each
associated with a localized, non-degenerate f-electron core
orbital, coupled to a delocalized conduction electron orbital
via a local hybridization. Neighbouring conduction electron
orbitals are connected via a hopping matrix element and
electron interactions enter the model via an on-site Coulomb
repulsion.

The dynamical mean field theory (DMFT) [2] has proved
to be a very powerful framework for studies of various lattice
models such as the Hubbard model or the PAM. Within DMFT,

which is exact in the limit of infinite dimensions, the self-
energy becomes spatially local or momentum independent. As
a consequence, lattice models map onto an effective single-
impurity Anderson model (SIAM) with a self-consistently
determined host [2].

The PAM in the absence of a magnetic field has been
studied extensively within the framework of DMFT. Some of
the numerical or semi-analytical methods (impurity solvers)
that exist for solving the effective SIAM that arises within
DMFT are quantum Monte Carlo [3], numerical renormal-
ization group [4], iterated perturbation theory [5], noncross-
ing approximation [6], the local moment approach [7, 8],
the large-N /slave-boson [9], exact diagonalization [10], self-
consistent perturbation theory [11], the Gutzwiller variational
method [12] and the average T -matrix approximation [13]. Ev-
ery method has its own advantage, however most of them suf-
fer from one or the other limitations. For example, the QMC
suffers from a minus sign problem at low temperature or large
interactions, while IPT is able to capture only an algebraic de-
cay of the Kondo scale with increasing interactions. ED and
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NRG are in principle exact, as is QMC, but since the spectral
functions are obtained as a set of discrete poles, a broadening
is required, which is non-uniquely specified.

In this context, the local moment approach (LMA)
[8, 14–18], a diagrammatic theory based non-perturbative
many body method, has emerged as an approach for the
single-impurity model and even for the lattice models within
DMFT, that overcomes some of the limitations mentioned
above. In particular, one obtains the exact dependence on
interactions and hybridization of the Kondo scale of the SIAM
in strong coupling as the Bethe ansatz solution for the Kondo
model [14]. Very good agreement has been seen between
LMA and NRG results for the spectral functions of the
SIAM [17, 18]. Within DMFT, the LMA has proved quite
successful in describing the spectral and transport properties
of several metallic and insulating heavy fermion systems such
as CeB6, SmB6, YbAl3, CeAl3, YbB12, CeOs4Sb12 in the
paramagnetic phase [19–21]. The LMA is computationally
inexpensive, yields quantities in real frequency directly, and
is semi-analytical. One limitation of LMA is that it is
based on a symmetry restoration ansatz, that is not easily
generalizable to other problems, such as the multi-orbital or
multi-channel cases. Recently, a generalization of LMA has
been reported for the multi-orbital Anderson and Hubbard
model [22]. Further, it was shown that the LMA is a conserving
approximation. The other limitation is that since LMA is an
approximate theory, one has to benchmark its results against
more exact theories such as NRG and QMC to ascertain its
reliability. Nevertheless, given the several advantages above,
and benchmarks, the LMA within DMFT is an appropriate
choice to study the effects of magnetic fields in heavy fermions.

Several theoretical studies of the effects of magnetic field
on heavy fermion systems using either the Kondo lattice model
(KLM) or the PAM have been reported. The magnetic field-
induced insulator–metal transition in Kondo insulators has
been studied by various groups [23–25]. As relevant to heavy
fermion metals, the metamagnetic transition has been studied
using large-N mean field [26] and subsequently using DMFT
+ QMC [27]. In this work, our objective is to understand
magnetotransport in heavy fermion metals. Previous work
in this direction has been carried out mainly either using the
single-site Anderson models [28], thus missing out the lattice
coherence effects completely, or using the large-N mean field
treatment of the Anderson lattice Hamiltonian [29]. In order
to capture the lattice coherence effects along with the single-
impurity incoherent regime, quantitatively within a single
framework, we employ the finite field LMA [17, 18, 25] within
DMFT for the periodic Anderson model away from half-filling
and determine the effect of a magnetic field on the spectra
and the transport of heavy fermion metals. Our focus has
been on the strong coupling regime, and the quantities that
we have studied are spectral functions and magnetoresistance.
The paper is organized as follows; the model and formalism
are presented in section 2, followed, in section 3 by results for
the field evolution of single-particle dynamics and dc transport.
In section 4, the experimental magnetoresistance of CeB6 is
compared with theory; and finally we conclude with a brief
summary.

2. Model and formalism

The Hamiltonian for the PAM in standard notation is given by:

Ĥ = −t
∑

(i, j),σ

c†
iσ c jσ +

∑

iσ

(
εf + U

2
f †
i−σ fi−σ

)
f †
iσ fiσ

+ V
∑

iσ

( f †
iσ ciσ + h.c.) +

∑

iσ

εcc†
iσ ciσ . (2.1)

The first term describes the kinetic energy of the non-
interacting conduction (c) band due to nearest neighbour
hopping t . The second term refers to the f-levels with site
energies εf and on-site repulsion U , while the third term
describes the c/f hybridization via the local matrix element
V . The final term represents the c-electron orbital energy.
In the limit of large dimensions, the hopping needs to be
scaled as t ∝ t∗/

√
Z , where Z is the lattice coordination

number. We consider the hypercubic lattice, for which the
non-interacting density of states is an unbounded Gaussian
(ρ0(ε) = exp(−ε2/t2∗ )/(

√
π t∗)). Particle–hole asymmetry in

the PAM could be introduced in two ways [8]: (i) through an
asymmetric conduction band, i.e. εc �= 0, or (ii) through an
asymmetric f-level, εf �= −U

2 . In general, we may quantify the
f-level asymmetry by defining η = 1 + 2εf

U , such that η = 0
is equivalent to particle–hole symmetric f-levels. Our primary
interest is in the strong coupling Kondo lattice regime (nf → 1)
but with arbitrary conduction band filling (nc).

Within DMFT, the PAM may be mapped onto an effective
self-consistent impurity problem within DMFT. We choose the
local moment approach to solve the effective impurity problem
arising within DMFT. For details of the LMA developed for use
within DMFT in the absence of a field, the reader is referred to
some of our previous work [8, 19–21]. Magnetic field effects
in the symmetric PAM as appropriate to Kondo insulators
was recently studied by us [25]. As discussed in that work,
the presence of a global magnetic field results in the Zeeman
splitting of the bare electronic energy levels as εγσ = εγ −σhγ ,
for γ = c and f-electrons. Here hγ = 1

2 gγ μB H and μB is the
Bohr magneton; the constants gf and gc are the electronic g-
factors for the f- and c-electrons respectively. Although gf �=
gc in general, for simplicity we set gf = gc. The degeneracy of
the symmetry broken solutions at the mean field level (denoted
by A and B) is lifted by a magnetic field. We consider here
h > 0 for which +|μ(h)| (A-type) is the sole solution. The
Feenberg self-energy [8, 19, 25] becomes a functional solely
of the A-type Green’s function, i.e. Sσ (ω) ≡ Sσ [Gc

Aσ ]. Since
the B-type solution does not exist, the label ‘A’ will be implicit
in the following.

In presence of a uniform magnetic field, the LMA Green
functions are given by

Gc
σ (ω, T, h) =

[
ω+ + σh − εc − Sc

σ [Gc
σ ]

− V 2

ω+ + σh − εf − 	̃σ (ω, T, h)

]−1

(2.2)

Gf
σ (ω, T, h) =

[
ω+ + σh − εf − 	̃σ (ω, T, h)

− V 2

ω+ + σh − εc − Sc
σ [Gc

σ ]
]−1

(2.3)

2
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with Gγ (ω) = 1
2

∑
σ Gγ

σ (ω). The self-energy can be written
as a sum of the static and dynamic parts as,

	̃σ (ω, T, h) = U

2
(n̄ − σ |μ̄|(T, h)) + 	σ (ω, T, h) (2.4)

where |μ̄|(T, h) is the UHF local moment in presence of a
magnetic field and temperature. The dynamical self-energy
within the LMA is given by [16, 25]

	−σ (ω, T, h) = U 2
∫ ∞

−∞

∫ ∞

−∞
dω1 dω2 χ−σσ (ω1, T, h)

× Dσ (ω2, h)

ω+ + ω1 − ω2
h(ω1; ω2)

h(ω1; ω2) = θ(−ω1)[1 − f (ω2, T )] + θ(ω1) f (ω2, T )

(2.5)

where χ−σσ (ω, T, h) = π−1 Im �−σσ (ω, h), f (ω) =
[expβω +1]−1 is the Fermi function and θ(ω) is the Heaviside
step function. Here, �−σσ (ω, T, h) denotes the transverse spin
polarization propagator which can be expressed as �+− =
0�+−/(1 − U 0�+−), where 0�+−, the bare p–h bubble,
is constructed using the field dependent mean field spectral
densities [14, 20]. The host spectral function is given by
Dσ (ω, h) = − 1

π
Im Gσ (ω, h); where the host/medium Green’s

function Gσ is given by

Gσ (ω, T, h) =
[
ω+ − ef + σ x + σh

− V 2

ω+ − εc + σh − Sc(ω, T, h)

]−1

(2.6)

where the parameters x = U |μ|/2 and ef are determined at
h, T = 0 by satisfying the symmetry restoration condition

	R
↑ (ω = 0; ef, x) − 	R

↓ (ω = 0; ef, x) = U |μ̄(ef, x)| (2.7)

and Luttinger’s integral theorem [8, 30]

IL(ef, x) = Im
∫ 0

−∞
dω

π

∂	(ω)

∂ω
Gf(ω) = 0 (2.8)

which in turn ensures a Fermi liquid ground state. Note that ef

is distinct from εf. The latter is a ‘bare’ model parameter while
the former is a derived ‘shifted chemical potential’, which is
determined through the imposition of the Luttinger’s integral,
or equivalently the Friedel sum rule [8]. In practice however,
it is more convenient numerically to fix x and ef at the outset
and treat U and εf as unknown parameters to be determined by
the above two conditions [8]. As input for the calculation at a
given field/temperature, we use the self-energies and Green’s
functions of a lower field/temperature.

In the limit of infinite dimensions, vertex corrections
in the skeleton expansion for the current–current correlation
function are absent, hence a knowledge of single-particle
dynamics is sufficient within DMFT to determine q = 0
transport properties. For h > 0, the d-dimensional isotropic
conductivity is computed by adding the contributions from
each of the spin channels as

σ̄ (ω, T, h) = σ0t2∗
dω

∑

σ

∫ ∞

−∞
dω1 [ f (ω1) − f (ω1 + ω)]

× 〈Dc
σ (ε; ω1)Dc

σ (ε; ω1 + ω)〉ε (2.9)

where σ0 = πe2

h̄a (a is the lattice parameters) and Dc
σ (ε; ω) =

− 1
π

Im Gc
σ (ε; ω). The lattice c-Green’s function is given by

Gc
σ (ε; ω) = [γσ (ω, T, h) − ε]−1 where

γσ = ω+ + σh − εc − V 2(ω+ + σh − εf − 	̃σ (ω, T, h))−1,

and the ε-average is defined by

〈A(ε; ω)〉ε =
∫ ∞

−∞
dε ρ0(ε)A(ε; ω). (2.10)

We now proceed to discuss the results obtained by
implementing the finite field and finite temperature LMA.

3. Results and discussions

In this section, we will discuss the single-particle dynamics and
transport in the presence of a magnetic field using LMA. Our
primary focus is on the strong coupling Kondo lattice regime
(where nf → 1, but nc is arbitrary). Before discussing the
finite field calculations, we will review a few well established
concepts. At T = 0 and h = 0 [8], the strong coupling Kondo
lattice regime is characterized by an exponentially small (in
strong coupling) low energy scale ωL = Z V 2/t∗. The single-
particle properties of the asymmetric PAM exhibit universal
scaling in terms of ω/ωL and for a fixed εc/t∗ and η. For
finite-T and h = 0, the spectra Dc(ω) and V 2 Df(ω) exhibit
scaling in terms of ω/ωL and T/TL (TL = ωL ). In summary,
the spectra and transport properties of the PAM are universal
functions of ω/ωL and T/ωL , for a given conduction band
filling and f-level asymmetry; thus being independent of the
bare U/t∗ and V/t∗. In this context, it is important to mention
that the universal form of the scaling functions does depend,
albeit weakly, on the specific lattice, which manifests in the
bare conduction band density of states. The application of
magnetic field does not destroy this universality as shown in
a recent work on the symmetric PAM (T = 0) where such
scaling in terms of ω̃h = ωt∗/(Z(h)V 2) for a fixed effective
field (detailed description is in [25]) was shown to hold good
in the presence of a field as well.

To see if such scaling occurs for the asymmetric case, we
carry out a low frequency Fermi liquid analysis of the Green’s
functions by expanding the self-energy about the Fermi level
to first order in ω as

	R
σ (ω, h) = 	R

σ (0, h) +
(

1 − 1

Zσ (h)

)
ω. (3.1)

Substituting equation (3.1) in equations (2.2) and (2.3), we find
that the spin dependent spectral functions are just renormalized
versions of their non-interacting counterparts and are given by
(neglecting the ‘bare’ terms h and ω in the strong coupling
limit)

Dc
σ (ω; h)

ω→0→ ρ0

(
−εc − 1

ω̃hσ − ε̃∗
f + σhσ

eff

)
(3.2)

Df
σ (ω; h)

ω→0→ t2∗
V 2(ω̃hσ − ε̃∗

f + σhσ
eff)

2
Dc

σ (ω; h) (3.3)

3
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Figure 1. Insets: LMA spin dependent conduction and f-electron
spectra versus bare frequency ω/t∗ for εc = 0.3t∗, η → 0,
V 2 = 0.2t2

∗ and T = 0 for three parameter sets: U ∼ 5.1t∗ and
h̃ = 0.3 (solid), U ∼ 6.1t∗ and h̃ = 0.25 (dotted), U ∼ 6.6t∗ and
h̃ = 0.24 (dashed), for fixed heff

↑ = 0.39 (where h̃ = ht∗/(Z(0)V 2)).
Main: The same spectra when plotted versus ω̃h↑ = ωt∗/(Z↑(h)V 2

collapse into one single universal form.

where ω̃hσ = ωt∗/(Zσ (h)V 2) and the renormalized f-level
(ε̃∗

f ) and heff
σ can be expressed as,

ε̃∗
f = t∗

V 2

(
εf + Un̄

2
− σU μ̄

2
+ 	R

σ (0, 0)

)
(3.4)

and
heff

σ = t∗
V 2

(h − σ(	R
σ (0, h) − 	R

σ (0, 0))). (3.5)

Using the SR condition, equation (2.7), it is easy to see
that the effective f-level, ε̃∗

f is spin independent. Note that
the quantities thus defined, namely, ω̃hσ , ε̃∗

f and heff
σ are

dimensionless.
From equations (3.2) and (3.3), we can infer the following:

(i) the spin dependent spectra Dc
σ (ω, h) and V 2 Df

σ (ω, h)

should exhibit scaling in terms of ω̃hσ for a fixed heff
σ i.e., for a

fixed heff
σ , if we plot the spin dependent spectra versus ω̃hσ for

different values of U , they should collapse onto a single curve
at the low energy regions for a particular heff

σ . This is shown
in figure 1 where in the insets, the conduction electron spectra
for up spin (top panel) and the f-electron spectra for up spin
(bottom panel) are plotted as a function of the bare frequency
ω/t∗ with εc = 0.3t∗, η → 0, V 2 = 0.2t2∗ and T = 0 for three
parameter sets: U ∼ 5.1t∗ and h̃ = 0.3 (solid), U ∼ 6.1t∗ and
h̃ = 0.25 (dotted), U ∼ 6.6t∗ and h̃ = 0.24 (dashed), such
that heff

↑ = 0.39 is fixed (where h̃ = ht∗/(Z(0)V 2)). In the
main panel the same spectra are plotted as a function of ω̃h↑.
We see that when we plot the spectra versus bare frequency,
they appear very different, but when plotted versus ω̃h↑ (main
panel: top and bottom), they collapse onto a single universal
form. We have checked that similar universality also holds for
the down spin for a fixed heff

↓ .
(ii) The spin dependent conduction and f-electron spectra

Dc
σ (ω) and V 2 Df

σ (ω) should adiabatically connect to the non-

Figure 2. LMA spin dependent scaling spectra (solid lines) are
superposed onto the corresponding non-interacting spectra (dotted
lines) for a fixed heff

↑ = 0.45 and ε̃∗
f = 1.09.

interacting limit at low energy scales i.e., if we take the c-
electron and f-electron fields as zero and heff

σ respectively,
substitute for εf the renormalized f-level (ε̃∗

f ) and compute the
spectra in the non-interacting limit; then the interacting spectra
and the non-interacting spectra should be same at low energy
scales. This is shown in figure 2, where the spin dependent
scaling spectra Dc

↑(ω) for the interacting case (U = 6.6t∗)
is superposed onto the non-interacting spectra. We see from
figure 2 that both the curves are almost identical near the Fermi
level. This demonstrates adiabatic continuity of the strong
coupling regime to the non-interacting limit which represents
Fermi liquid behaviour in the presence of a magnetic field for
the asymmetric case (in parallel to the symmetric PAM [25]).

To see the effect of magnetic field on the spin dependent
effective fields heff

σ and the spin dependent quasiparticle
weights Zσ , we have plotted in figure 3, the spin dependent
effective fields (heff

↑ and heff
↓ ) versus h̃ (left panel) and the spin

dependent quasiparticle weights (Z↑(h) and Z↑(h)) versus h̃
(right panel). We see that Z↑(h) ∼= Z↑(h) and heff

↑ ∼= heff
↓

up to about h̃ ∼ 10.0. So, we can assume the spin summed
spectra Dc(ω) and V 2 Df(ω) also should exhibit scaling in
terms of ω̃hσ for low fields (up to h̃ ∼ 10) for a fixed heff

σ .
To see this, we plot spin scaling spectra (main panel) as well
as the corresponding spin summed spectra in figure 4 (insets)
for U = 5.1t∗ (solid line) and U = 6.6t∗ (dotted line) for
a fixed heff

↑ = 4.2 (h̃ ∼ 10.0) and T = 0. Indeed, we see
that the spin summed spectra also exhibit universal scaling
and adiabatic continuity at low energy scales. We wish to
reiterate the discussion in the beginning of this section that the
universality and scaling demonstrated above holds for a fixed
conduction band filling nc, a fixed f-level asymmetry and for a
specific bare conduction band density of states. In other words,
the functional forms of the spectra shown above would change
for a different choice for nc or η or ρ0(ε).

Now we turn to the LMA results for the field evolution
of the asymmetric PAM for a fixed temperature. In figure 5,
we show T = 0 spin summed conduction and f-electron
scaling spectra for various fields: h̃ = 0 (solid), 0.5 (dotted),
1.0 (dashed), 1.5 (dot–dashed), 2.0 (bold solid), 3.0 (bold

4
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Figure 3. Left panel: heff
σ versus h̃ = ht∗/(Z V 2) (Z is the quasiparticle weight for h = 0) for εc = 0.3t∗, η → 0, T = 0 and U = 6.6t∗. Right

panel: spin dependent quasiparticle weight Zσ (h) versus h̃ for the same parameters.

Figure 4. Main panel: LMA up spin conduction electron scaling
spectra (top) and up spin f-electron scaling spectra (bottom) versus
ω̃h↑ for εc = 0.3t∗, η → 0 and V 2 = 0.2t2

∗ for two parameter sets:
U ∼ 5.1t∗ and h̃ = 10.0 (solid), U ∼ 6.6t∗ and h̃ = 9.0 (dotted) for
fixed heff

↑ = 4.2. Insets: the corresponding spin summed conduction
and (top) f-electron (bottom) scaling spectra versus ω̃h↑ for the same
parameter sets. Spin summed as well as the spin dependent spectra
exhibit universality/scaling in the strong coupling regime.

dotted), 5.0 (bold dashed) and 10.0 (bold dot–dashed) and fixed
interaction strength U = 6.6t∗. In our earlier work on the
symmetric PAM [25], we have shown that there is a gap at
the Fermi level, as there must be for a Kondo insulator. But
in the asymmetric limit εc = 0.3t∗, h = 0 (see figure 5), the
gap moves away from the Fermi level and becomes a pseudo-
gap. The width of the Kondo resonance at the Fermi level is
proportional to the low energy scale ωLσ = Zσ (0)V 2. The
insets of figure 5 show the spectra on a large frequency scale.
It is seen that for very large frequencies the tails of the spectra
for all fields are identical, which is physically natural since one

Figure 5. LMA conduction and f-electron spectra versus
ω̃h↑ = ω t∗/(Z↑(h)V 2) for U = 6.6t∗, εc = 0.3t∗ and η → 0.0 for
h̃ = 0 (solid), h̃ = 0.5 (dotted), 1.0 (dashed), 1.5 (dot–dashed), 2.0
(bold solid), 3.0 (bold dotted), 5.0 (bold dashed) and 10.0 (bold
dot–dashed) for T = 0.

can expect that the effect of the field should dominate only
for |ω̃σ | � h t∗/(Zσ (h)V 2). Now with increasing magnetic
field, the lattice Kondo resonance splits into two peaks, with
the distance between the peaks also increasing. Qualitatively
we can understand the results as follows: in the non-interacting
limit for the symmetric case, we have shown that the c and f-
levels shift rigidly due to the Zeeman effect. The same concept
is valid for the asymmetric case also for the non-interacting
limit i.e. the spectral function for the up and down spin bands
shift rigidly away from the Fermi level. In the presence of
interactions, in parallel to the symmetric case, the shift of
the spin bands should not be rigid due to the competition
between Zeeman splitting and Kondo screening. And indeed,
we find that although the distance between the two peaks
varies linearly with field in strong coupling (see figure 6), the

5



J. Phys.: Condens. Matter 21 (2009) 405602 D Parihari and N S Vidhyadhiraja

Figure 6. Splitting of the Kondo resonance versus field for
U = 5.5t∗ and εc = 0.5, V 2 = 0.2t2

∗ . The slope of the line in the
main panel, i.e. SKR/h as a function of interaction strength U is
shown in the inset.

slope is not equal to 2 as it would have been if the shift had
been rigid (or purely due to the Zeeman effect). In fact, the
slope should be equal to 4 as the following argument shows.
From equations (3.2)–(3.5), it is straightforward to see that the
splitting of the Kondo resonance, SKR, is given by

SKR =
∑

σ

Zσ (h)[h − σ(	R
σ (0, h) − 	R

σ (0, 0))]. (3.6)

The strong coupling asymptotic behaviour of the above
quantity may be inferred using the expressions derived in [17]
for the flat-band SIAM.

	R
σ (0, h) − 	R

σ (0, 0) = −4�0σ

π
ln

[
Zσ (h)

Zσ (0)

]
(3.7)

Zσ (h)

Zσ (0)
= 1 + π

2

h

�0 Zσ (0)
(3.8)

where �0 = πV 2ρ0(0) is the flat-band hybridization.
Although these were derived for the SIAM, we are justified
in using the same expressions for the PAM for the following
reason: since the transverse spin polarization propagator is
constructed using the UHF propagators which do not contain
the low energy scale, and hence are flat for ω̃hσ ∼ O(1), the
strong coupling (SC) asymptotics derived for the SIAM would
be similar to that for the PAM. The only difference would be in
the value of �0 ∼ O(V 2/t∗) since the UHF propagators for the
PAM have a different structure than that of the SIAM. Using
equations (3.7) and (3.8) in (3.6), and expanding the logarithm
appearing in equation (3.8) to linear order in h, we get

SKR
SC→ 4h. (3.9)

As argued in [17], the above result is synonymous to
the Wilson’s ratio being equal to 2 in SC. The inset of
figure 6 shows the ratio SKR/h as a function of interaction
strength. It is seen that even for U ∼ 2, the ratio
is ∼3, which implies a non-rigid shift of the spin bands.
Further, with increasing interaction strength, the ratio increases
monotonically. Although it must asymptotically approach
4, to be consistent with the result (equation (3.9)) obtained
above, we are unable to access the large U region (for εc =
0.5) due to the prohibitive computational expense in handling
exponentially small low energy scales.

In a recent DMFT study using QMC as the impurity
solver, the Kondo lattice model was studied [27]. Real
frequency spectra were obtained with a stochastic analytic
continuation method. The parameters chosen were J = 1.6t∗
and nc = 0.85. The main result was that the bands were
found to shift rigidly, in contrast to what we find above. The
difference with our findings could be due to various reasons,
of which the most important seems to be that their low energy
scale is 0.09t∗, while our scales are ∼10−3t∗ (see figure 3).
This is significant because only when the Kondo scale is
exponentially small is the coupling between the impurity and
the conduction spin renormalized strongly, and thus the Kondo
screening would be strong. If this Kondo screening is weak,
as it could probably be in the study mentioned above, then
the Zeeman effect would win easily, and the bands would shift
rigidly.

Now, we turn our attention to field dependent transport
properties. At finite temperature, as the spin summed
conduction electron spectra exhibits universal scaling in terms
of T/ωLσ (ωLσ = Zσ (h)V 2/t∗) in the strong coupling
regime for low fields, we expect that the resistivity will also
exhibit scaling in terms of T/ωLσ . The classic HF metallic
resistivity increases with temperature (initially as T 2), goes
through a maximum Tmax � ωL (the peak position of ρ(T ))
and then decreases with temperature characteristic of single-
impurity behaviour. We observe the same form for the
resistivity in our calculations. In figure 7 (top), the resistivity
versus scaled temperature T/ωLσ is shown for both σ =↑,↓
and for a range of fields: h̃ = 0.0 (solid), 0.06 (dotted),
0.5 (dashed), 0.5 (long dashed) and 2.0 (dot–dashed) with
U/t∗ equal to 6.6. The two most significant features of the
above result are—(i) negative magnetoresistance is observed
over the entire range of temperatures as shown in figure 7
(bottom). (ii) The maximum in resistivity at the coherence
peak reduces in magnitude and moves to higher temperatures
with increasing field. In previous work, magnetoresistance was
found to be positive for the SIAM [31] through Fermi liquid
theory arguments and for the Anderson lattice [13] through
the average T -matrix approximation (ATA). The fundamental
difference between the SIAM and the PAM is the presence
of lattice coherence in the latter which manifests itself at low
temperatures. At T � ωL , it is clear that magnetic field
suppresses spin-flip scattering (SFS) since the main effect of
a field would be to polarize the system. However, at low
temperatures, the physics is different. Kondo singlet formation
in the SIAM, which at zero field, quenches the SFS and
hence leads to saturation of resistivity, is inhibited at finite
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Figure 7. Top: left panel: resistivity versus ω̃h↓ for the same parameters, but for the various fields (h̃ = 0.0 (solid), 0.06 (dotted), 0.1 (dashed),
0.5 (long dashed) and 2.0 (dot–dashed)). Right panel: resistivity versus ω̃h↑ for the same sets of parameters. Bottom: magnetoresistivity
versus bare fields h/t∗ for U = 6.6t∗, εc = 0.3t∗ and η → 0 for T̃ = 0.3 (solid), 0.6 (dotted), 2.0 (dashed), 6.0 (dot–dashed).

fields, implying an increase in incoherent scattering and thus
a positive magnetoresistance. In the lattice case, however,
although a magnetic field does inhibit the singlet-forming
screening process of local moments, the periodicity of the local
moments (even though not fully screened), introduces lattice
coherence which strongly suppresses incoherent scattering
at low temperatures, and hence again leads to negative
magnetoresistance. In other words, the incoherent scattering
introduced by a magnetic field in the SIAM through the
inhibition of the screening process, is countered in the PAM
because of the presence of lattice/Bloch coherence. It
is possible that such an effect is enhanced in the present
calculation due to the use of the DMFT framework, since
non-local dynamical fluctuations are completely neglected in
this framework. The ATA for the Anderson lattice is in a
subtle way somewhat similar to the single-site DMFT without
the self-consistency. Which would imply that the effects
of lattice coherence are probably suppressed in the ATA,
and hence positive magnetoresistance is observed. Thus, we
conclude that, at higher temperatures (T � ωL ), suppression
of the spin-flip scattering, and at lower temperatures, the
presence of lattice coherence in the PAM lead to negative
magnetoresistance in the presence of a field for all T .

The shift of coherence peak to higher T with increasing
field is a reflection of the increase in the low energy scale with
field (see figure 3). The latter result has been obtained for
the SIAM as well [17]. Since increasing interactions lead to
an exponential decrease in ωL , it appears that the polarizing
effect of a magnetic field is to counter the effect of interactions,
and eventually at very large fields, wipe out local moment
physics (scattering/screening) completely. At temperatures

much higher than the field (T � h), the effect of a magnetic
field is negligible implying that the magnetoresistance is
almost zero. Next, we compare our theoretical results with
experiment.

4. Comparison to CeB6

In this section we want to compare our theoretical results with
experiments on CeB6. The rare-earth hexaboride CeB6 has
been investigated for many years [32–37]. The cubic lattice
system, at low temperatures, exhibits various magnetic phase
transitions between 1.6 and 3.3 K, which manifest clearly
as kinks in the resistivity, above which the system is in a
paramagnetic phase. It is the T > 3.3 K phase that we
concentrate on, since our approach does not describe the
symmetry broken states. Although there have been extensive
studies of this material, the most detailed magnetoresistance
study was carried out by Takase et al [32], who measured the
resistivity of a CeB6 single crystal in the temperature range
from 3 to 300 K and up to magnetic field 85 kOe. We use their
data for comparison to our theory.

From an earlier study [21], it is known that the HF system
CeB6 belongs to the moderately strong coupling regime.
Hence we have taken the theoretical results to compare with
experiments on CeB6 for the following parameters: U = 2.4t∗,
εc = 0.5t∗, η → 0 and V 2 = 0.2t2∗ . The experimental
resistivity for zero field shown in the left panel of figure 8 (data
from [32]) is characteristic of classic HF metals. The resistivity
rises sharply from a low value, going through a coherence peak
at T ∼ 4 K, and subsequently decreasing through a small log–
linear regime. At higher temperatures [21, 33] (not shown),
resistivity exhibits single-impurity incoherent behaviour (T ∼
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Figure 8. Resistivity versus temperature of CeB6 (a) experiment (b)
theory for the various fields: H = 0 kOe (solid), 20 kOe (dotted),
40 kOe (dashed), 60 kOe (long dashed) and 85 kOe (dot dashed).

100–300 K), goes through a weak minimum (T ∼ 375 K)
and finally starts increasing again like a normal metal. With
increasing magnetic field, negative magnetoresistance is seen
at low temperatures (T � 50 K) for all fields. At higher
temperatures, the resistivity remains unaffected by magnetic
field. This behaviour is natural and expected as discussed
in section 3. The application of magnetic field results in
suppression of spin–spin scattering at T � ωL , thus causing a
reduction in resistivity. At low temperatures lattice coherence
takes over and the magnetoresistance stays negative. In the
strong coupling regime, the effect of a magnetic field (H )
should be expected to extend to temperatures, which are
of a similar magnitude i.e. T ∼ gμB H/kB, which in the
experiment corresponds to ∼5.6 K for H = 85 kOe (see next
paragraph). However, the highest field affects the resistivity up
to a temperature of ∼50 K. Such behaviour is characteristic of
the intermediate coupling regime [20], which is consistent with
the model parameters for CeB6.

To compare the experimental results with our theory,
two fundamental requirements need to be met. The first
requirement is that we should extract the contribution to the
measured resistivity from phonons (ρph(T )) and the residual
resistivity (ρ(0)). This is given by ρ

exp
mag(T ) = a(ρ(T ) −

ρ(0)) − ρph(T ), where a is a constant which comes from the
error of the sample geometry to the measured resistivity. A
detailed discussion of this point is given in [21]. In this work,
we simply assume a = 1. The second requirement is that
the value of the low energy scale is needed for comparing our
theoretical results with experiment. For this, we superposed
the theoretical resistivity ρmag(T ) onto ρ

exp
mag(T ) for h = 0

to calculate the value of the low energy scale. The value of
the low energy scale turns out to be ωL = 2.2 K. Assuming
the g-factor to be roughly unity, the magnetic field of 1 kOe
can be translated into multiples of the low energy scale. For

H = 1 kOe, 1
2 gμB H � 0.033 K � 0.015ωL . Thus the

magnetic fields employed in the experiments [32] turn out
to be (in multiples of ωL ), h̃ = 0, 0.3, 0.6, 0.9 and 1.25,
corresponding to fields of H = 0, 20 kOe, 40 kOe, 60 kOe
and 85 kOe respectively. So, given the model parameters and
the low energy scale, along with the temperature range and
the field range, we can compute the resistivity as a function
of temperature at the same fields as in the experiment.

With a simple multiplicative scaling of the theoretical
resistivities on the x-axis by the low energy scale and the y-
axis by a single multiplicative factor (the same for all fields),
we show the theoretical computed dc resistivities for the same
magnetic fields as the experiment in the right panel of figure 8.
The experimental resistivity is found to rise more steeply than
the theoretical one. The magnitude of magnetoresistivity is
found to be higher in theory than the experiment. Nevertheless
the functional form agrees quite well. At T � 50 K,
the magnetic field is seen to have very little effect on the
resistivity, both in theory and experiment. Below 50 K, the
magnetoresistance in the theory is negative, which is also
in agreement with experiment. The coherence peak is seen
to move to higher T with an increase in field; a behaviour
seen in the experiment as well. The small log–linear regime
that appears at temperatures higher than the coherence peak
temperature is also reproduced in the theory. Thus, when
compared with the experimental results in figure 8, good
qualitative agreement is found between theory and experiment.

5. Conclusions

In summary, we have employed a non-perturbative local
moment approach to the asymmetric periodic Anderson model
within DMFT in the presence of a magnetic field. The field
dependent dynamics and transport properties of the model have
been computed. In the strong coupling Kondo lattice regime
of the model, the local c- and f-electron spectral functions are
found to exhibit universal scaling, being functions solely of
ω/ωLσ , T/ωLσ (ωLσ being the low energy scale) for a given
effective field heff

σ . Although the externally applied field is
globally uniform, the effective local field experienced by the
c- and f-electrons differs because of correlation effects. Fermi
liquid behaviour has been established even in the presence
of magnetic fields through adiabatic continuity to the non-
interacting limit. In the presence of a magnetic field, the
quasiparticle peak at h = 0 and T = 0 splits into two. The
shift of these peaks away from the Fermi level is not rigid
due to the competition between local moment screening and
Zeeman spin polarization. Although these shifts vary linearly
with the field in strong coupling, the slope is enhanced as
compared to the non-interacting limit. Finally, a comparison
of theoretical magnetoresistance results with those of CeB6,
measured experimentally, yields good agreement.
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